Generalization of Gas Hydrate Distribution and Saturation in Marine Sediments by Scaling of Thermodynamic and Transport Processes
نویسندگان
چکیده
Gas hydrates dominated by methane naturally occur in deep marine sediment along continental margins. These compounds form in pore space between the seafloor and a sub-bottom depth where appropriate stability conditions prevail. However, the amount and distribution of gas hydrate within this zone, and free gas below, can vary significantly at different locations. To understand this variability, we develop a one-dimensional numerical model that simulates the accumulation of gas hydrates in marine sediments due to upward and downward fluxes of methane over time. The model contains rigorous thermodynamic and component mass balance equations that are solved using expressions for fluid flow in compacting sediments. The effect of salinity on gas hydrate distribution is also included. The simulations delineate basic modes of gas hydrate distribution in marine sediment, including systems with no gas hydrate, gas hydrate without underlying free gas, and gas hydrate with underlying free gas below the gas hydrate stability zone, for various methane sources. The results are scaled using combinations of dimensionless variables, particularly the Peclet number and Damkohler number, such that the dependence of average hydrate saturation on numerous parameters can be summarized using two contour maps, one for a biogenic source and one for upward flux from a deeper source. Simulations also predict that for systems at steady state, large differences in parameters like seafloor depth, seafloor temperature and geothermal gradient cause only small differences in average hydrate saturation when examined with scaled variables, although important caveats exist. Our model presents a unified picture of hydrate accumulations that can be used to understand well-characterized gas hydrate systems or to predict steady-state average hydrate saturation and distribution at locations for which seismic or core data are not available.
منابع مشابه
Methane Hydrate Formation in Marine Sediment from South China Sea with Different Water Saturations
The kinetics of methane hydrate formation in marine sediments with different water saturations are important to assess the feasibility of the hydrate production and understand the process of the secondary hydrate formation in the gas production from hydrate reservoir. In this paper, the behaviors of methane hydrate formation in marine sediments from the South China Sea at different water satura...
متن کاملOffice of Fossil Energy Oil & Natural Gas Technology
Umitaka Spur, situated on an unusual collisional plate boundary along the eastern margin of the Japan Sea, hosts gas seeps, pock-marks, collapse structures, and gas hydrates. Piston cores were recovered from this ridge to understand carbon cycling, pore fluid gradients and authigenic mineralization above a methane-charged system. We present the chemistry of fluids and solids from three cores ad...
متن کاملEffect of Overpressure on Gas Hydrate Distribution
The effect of overpressure on gas hydrate and free gas distribution in marine sediments is studied using a one-dimensional numerical model that couples sedimentation, fluid flow, and gas hydrate formation. Natural gas hydrate systems are often characterized by high sedimentation rates and/or low permeability sediments, which can lead to pore pressure higher than hydrostatic (overpressure). To q...
متن کاملMeasurement of Mass Transfer Coefficients of Natural Gas Mixture during Gas Hydrate Formation
In this study, mass transfer coefficients (MTC’s) of natural gas components during hydrate formation are reported. This work is based on the assumption that the transport of gas molecules from gas phase to aqueous phase is dominant among other resistances. Several experiments were conducted on a mixture of natural gas at different pressures and temperatures and the consumed gas was monitored an...
متن کاملPrediction of Gas Hydrate Formation using HYSYS Software (TECHNICAL NOTE)
Gas hydrates attracted worldwide attention due to their potential as huge energy resource in the recent decades. Effective parameters which influence the formation of hydrates are high pressure, low temperature and water presence. HYSYS software is one of the major simulators which are widely used in the chemical and thermodynamic processes. This research was conducted to simulate gas hydrate f...
متن کامل